

Use of Polynomial Chaos Expansion for the modeling of uncertain dynamical systems

E. Chatzi and M. Spiridonakos Institute of Structural Engineering, ETH Zürich

DAAD Workshop, Thessaloniki, Greece 11 November, 2014

DAAD Workshop, Thessaloniki, Greece, 11.11.2014 PCE for Uncertain Dynamical Systems

The importance of Modeling

Models are abstract representations of the real world

Simulation models are extensively used in civil engineering practice. Such models allow the user to

- understand structural system performance,
- predict structural behavior,
- diagnose damage,
- optimize design, etc

The importance of Modeling

Structures may fail because:

- the models used for their design do not properly represent the complexity of the physics;
- the values of the input parameters have not been selected properly.

Taking **uncertainty** into account in the analysis and design of structures is of crucial importance

Yet, in a lot of cases a fully detailed simulation is either **unrealizable** or too **costly**.

Dynamic response of structural systems with uncertainties subjected to extreme loading conditions.

The Metamodeling Problem

The Metamodeling Problem

Problem definition

Consider a structural system represented by a numerical model \mathscr{M} characterized by uncertain input parameters $\xi = [\xi_1, \xi_2, ..., \xi_M]^T$ with known joint pdf $f(\xi)$. The dynamic response of \mathscr{M} to a given input excitation $x[t, \xi]$ will also be a random variable:

 $y[t,\xi] = \mathcal{M}(x[t,\xi],\xi), \quad t = 1, 2, \dots, T$

A metamodel $\tilde{\mathscr{M}}$ which must be able to predict and/or simulate the detailed numerical model results in a computationally inexpensive way and with sufficient accuracy is sought.

Objectives of the study

- Development of a metamodeling method based on PC-NARX models
- Introduction of PC-NARX identification methods for both prediction and simulation purposes.
- The validation of PC-NARX metamodeling method through its application to the case of a five-storey shear frame model subjected to dynamic excitation leading to nonlinear response.

The Forward Model

AutoRegressive with eXogenous input (ARX) models

A j-DOF deterministic system is described by the general difference equation

 $x_i = a_1 x_{i-1} + a_2 x_{i-2} + \dots + a_{2j} x_{i-2j} + b_1 u_{i-1} + b_2 u_{i-2} + \dots + b_{2j-1} u_{i-2j+1}$

An $ARX(n_a, n_b, n_d)$ is defined as follows:

$$\mathbf{x}[t] + \underbrace{\sum_{i=1}^{n_a} a_i \cdot \mathbf{x}[t-i]}_{\text{AR part}} = \underbrace{\sum_{i=n_d}^{n_b} b_i \cdot u[t-i]}_{\text{X part}} + w[t], \quad w[t] \sim \textit{NID}(0, \sigma_w^2)$$

$$\underbrace{\begin{array}{ccc} n_a & : & \text{AR order} \\ n_b & : & \text{X order} \\ n_d & : & \text{delay} \end{array}}_{K \text{ part}} = \underbrace{\begin{array}{ccc} AR \text{ coefficients} \\ K \text{ coefficients}$$

DAAD Workshop, Thessaloniki, Greece, 11.11.2014 Po

The NARX Metamodel

The Metamodeling Problem

Polynomial Chaos Nonlinear ARX (PC-NARX) models

$$y[t] = \sum_{i=1}^{n_{\theta}} \theta_i(\xi) \cdot g_i(z[t]) + e[t]$$

random parameters $\theta_i(\xi)$ describe the uncertainty propagation. They may be expanded on a PC basis orthogonal to the pdf of the random input variables ξ

$$\theta_i(\xi) = \sum_{i=1}^p \theta_{i,j} \cdot \phi_{d(j)}(\xi)$$

 $z[t] = [y[t-1], \dots, y[t-n_a], x[t], \dots, x[t-n_b]]^{\mathsf{T}}$: regression vector n_a, n_b : maximum output and input time lags

e[t]: residual sequence

- θi, j: unknown deterministic coefficients of projection
- $d(\tilde{j})$: multi-indices of the multivariate polynomial basis

PC-NARX parameter estimation

• coefficients of projection $\theta_{i,j}$

 $g_i(\cdot)$: nonlinear function operators that reflect the nonlinear structural dynamics

 n_{θ} : number of nonlinear regression terms

- σ_e^2 : residual sequence variance
- $\phi_{d(j)}$: basis functions orthonormal w.r.t. the joint pdf of ξ

PC-NARX structure selection

- select nonlinear functions g_i(z[t]) (polynomial, wavelet, radial basis functions, and so on)
- select PC functional subspace

PC-NARX Models - the PC bases

The PC basis basis $\phi_{\mathbf{d}(j)}$ is formed from polynomial that are orthonormal with respect to the joint probability density function of $\boldsymbol{\xi}$. Assume the univariate case (single variable):

$E[\phi_{\alpha}(\boldsymbol{\xi}), \phi_{\beta}(\boldsymbol{\xi})] = \delta_{\alpha, \beta} = \begin{cases} 1 & \text{for } \alpha = \beta \\ 0 & \text{otherwise} \end{cases}$	PDF Normal (Gaussian) Uniform Gamma Chebyshev Beta	$\begin{array}{c} \text{Support} \\ (-\infty,\infty) \\ [-1,1] \\ (0,1) \\ (-1,1) \\ (-1,1) \end{array}$	Polynomials Hermite Legendre Laguerre Chebyshev Jacobi
$\Xi \approx \mathcal{N}(0, 1)$		0.8 06 04 02 02	
-20/ -20/ -20 2	1 2 3 4 5 rolman index	-02	

DAAD Workshop, Thessaloniki, Greece, 11.11.2014

Illustrative Example

DAAD Workshop, Thessaloniki, Greece, 11.11.2014

Estimation of a PC-NARX model for purposes of prediction

Estimation of a PC-ARX model for purposes of simulation

The simulated response of a given PC-NARX metamodel may be obtained recursively as:

$$\bar{y}_k[t] = \sum_{i=1}^{n_\theta} \theta_i(\xi_k) \cdot g_i(\bar{z}[t]), \quad t = 1, 2, \dots, T$$

with given initial conditions $\{\bar{y}_k[1-n_a], \dots, \bar{y}_k[0]\}\$ and $\{x_k[1-n_b], \dots, x_k[0]\}\$

Estimation of the model coefficients of projection θ based on the minimization of the Simulation Error criterion:

$$\widehat{\theta_s} = \arg\min_{\theta_s} \left\{ \sum_{k=1}^{K} \sum_{t=1}^{T} (y_k[t] - \bar{y_k}[t])^2 \right\} = \arg\min_{\theta_s} \left\{ \sum_{k=1}^{K} \sum_{t=1}^{T} \varepsilon_k^2[t] \right\}$$

$$\bigcup$$
Iterative nonlinear optimization methods

Flowchart of the complete identification scheme

Estimation of a PC-ARX model for purposes of Simulation

Assuming given initial conditions for the input & output $\{\bar{y}_k[1 - n_a], \ldots, \bar{y}_k[0]\}$ and $\{x_k[1 - n_b], \ldots, x_k[0]\}$ we may derive the simulated response of a PC-ARX metamodel via the following relationship:

$$ar{y}_k[t] = -\sum_{i=1}^{n_a} a_i(m{\xi}_k) \cdot ar{y}_k[t-i] + \sum_{i=0}^{n_b} b_i(m{\xi}_k) \cdot x[t-i], \quad t = 1, 2, \dots, T$$

In this case, the estimation of the model coefficients of projection θ is based on the minimization of the Simulation Error criterion:

$$\widehat{\theta_s} = \arg\min_{\theta_s} \left\{ \sum_{k=1}^{K} \sum_{t=1}^{T} (y_k[t] - \bar{y}_k[t])^2 \right\} = \arg\min_{\theta_s} \left\{ \sum_{k=1}^{K} \sum_{t=1}^{T} \varepsilon_k^2[t] \right\}$$

The relationship is in this case a **nonlinear one** which may be solved by employing **Iterative nonlinear optimization methods** such as the LevenbergMarquardt algorithm (LMA), the Newton-Raphson method or others.

Simple Implementation Example

The described framework is implemented for the simulation of the response of a **five-storey shear frame**, subjected to a (known) dynamic input in the form of earthquake excitation.

The frame is described by a nonlinear material law, allowing for the sections to move into the post-yield region which causes nonlinear behavior to occur.

We consider the following input parameters:

Input	Vertical	Horizontal
parameter	elements	elements
Density (kg/m ³)	7850	7850
Poisson ratio	0.29	0.29
Young moduli (GPa)	U(190, 210)	U(190, 210)
Yield stress (MPa)	U(200, 500)	U(200, 500)
Cross section area (m ²)	$\mathcal{U}(0.04, 0.09)$	0.0625

Numerical Application

One of the recorded acceleration instances for the El Centro earthquake * has been utilized as ground excitation:

causing the observed shear stress vs top floor displacement response. The curve shown here corresponds to the first simulation experiment (with ξ_1) and t = 1, 2, ... 250. * downloadable at: http://peer.berkeley.edu/peer.ground_motion_database

Simulation Experiments

The following visualization illustrates the range of Material and Geometric properties of the shear frame model for the 20 simulations conducted using a detailed structural model. The ANSYS finite element software has been used for the reference simulations.

Simulation Experiments

Below the reference numerical model dynamic response signals $y_k[t]$ for separate input parameter vectors ξ_1, ξ_2 and ξ_3 are plotted.

Simulation Experiments

The magnitude of the estimated FRF (using the Welch method - MATLAB pwelch) and the corresponding estimated coherence function of the dynamic response signals obtained for input parameter vectors ξ_1, ξ_2 and ξ_3 are plotted

Note:

The **Coherence Function** is a measure used to examine the relation between two signals or data sets. It is expresses the power transfer between input and output of a system.

It is defined as:

$$C_{xy} = \frac{|S_{xy}|^2}{S_{xx}S_{yy}}$$

Values of coherence will lie in the range $0 \le C_{xy} \le 1$. For an ideal constant parameter linear system with a single input x(t) and single output y(t), the coherence will be equal to one.

In the previous plot, the system corresponding to parameter set ξ_1 is therefore the furthest from linearity.

Numerical Application

Results

The estimated PC-ARX model parameters

DAAD Workshop, Thessaloniki, Greece, 11.11.2014 PCE for Uncertain Dynamical Systems

Results

Polynomial expansion of $b_4(\boldsymbol{\xi})$ model parameter onto the input space

Results

In order to **validate** the workings of the metamodeling framework the performance of the identified PC-ARX(10,10) metamodel is tested for the prediction and simulation of the dynamic response of the FE model subjected this time to the Pacoima Dam earthquake:

The performance in prediction and simulation is remarkable given the large reduction in computational time.

0.7836 % prediction error 3.7585 % simulation error 5000 times reduced simulation time

Results

Below the dynamic response of the numerical model and the corresponding PC-ARX(10,10) based one-step-ahead predictions (x) and refined PC-ARX(10,10) based simulations (+) ($\xi \neq \xi_k$; k = 1, ..., 20) are plotted

Summarizing

- Stochastic metamodels of low order that are capable of accurately approximating FE models are developed.
- The metamodeling method is based on NARX models and Polynomial Chaos basis expansion.
- The numerical results demonstrate the efficiency of the proposed methodology for accurate prediction and simulation of the dynamic response of the model.
- The proposed methodology may be adapted as an approximative low cost surrogate for a number of purposes such as vibration control, SHM, model updating and others.

Specialised Implementations

Parametric modelling of the Input - Earthquake Accelerograms [S. Rezaeian & A.D. Kiureghian 2010]

Modelling of the PEER database accelerograms

(results from the 1000 accelerograms with the best fit)

DAAD Workshop, Thessaloniki, Greece, 11.11.2014

EQ Input Parameterization

Input random vector realizations for the 200 simulations conducted

Validation based on a real earthquake ground motion acceleration excitation: FE vs PC-NARX metamodel

(El Centro earthquake time history loading)

Normalized residual sum of squares: prediction 13.15%, simulation 38.10% DAAD Workshop, Thessaloniki, Greece, 11.11.2014 PCE for Uncertain Dynamical Systems

Specialised Implementations WT

Performance Index Extraction for Wind Turbine Systems

DAAD Workshop, Thessaloniki, Greece, 11.11.2014

Specialised Implementations WT

Performance Index Extraction for Wind Turbine Systems

References

- M. Spiridonakos and E. Chatzi, "Metamodeling of Structural Systems through Sparse Polynomial Chaos Expansion, Proceedings of International Conference on Noise and Vibration Engineering, September 2012, Leuven, Belgium.
- M. Spiridonakos and E. Chatzi, "Metamodeling of structural systems with parametric uncertainty subject to stochastic excitation, 11th International Conference on Structural Safety & Reliability, June 16-20, 2013, Columbia University, New York, NY
- Spiridonakos, M., and Chatzi, E., "Metamodeling of structural systems with parametric uncertainty subject to stochastic excitation", Special Issue on "Structural Identification and Monitoring with Dynamic Data" in Earthquakes and Structures/ An International Journal for Earthquake Engineering Earthquake Effects on Structures, in press

PC-NARX identification results

Nonlinear regressors:

Initial search space:

$$g_i(z[t]) = z_{j_1}^{\ell_1}[t] \cdot z_{j_2}^{\ell_2}[t] \text{ with } \ell_1, \ell_2 = 0, \dots, 3, \ \ell_1 + \ell_2 \le 3$$
$$z[t] = [y[t-1], \dots, y[t-10], x[t], x[t-1], \dots, x[t-10]]^\mathsf{T}$$

Finally selected terms:

$$\begin{split} &y[t-1],\ldots,y[t-10],x[t],x[t-1],\ldots,x[t-10],\\ &y[t-1]\cdot y^2[t-2],\ldots,y[t-1]\cdot y^2[t-10],\\ &y^2[t-1]\cdot y[t-2],\ldots,y^2[t-1]\cdot y[t-10],\\ &y^3[t-1],y^3[t-2],y^3[t-3]. \end{split}$$

Multi-indices of the selected PC basis functions

	Ε	$\omega_{\rm mid}$	ω'	I_a	D ₅₋₉₅	
d(1)	0	0	0	0	0	
d(2)	1	0	0	0	0	
d(3)	0	1	0	0	0	
d(4)	0	0	0	0	1	
d(5)	1	0	0	1	0	
d(6)	0	1	0	0	1	
d(7)	0	2	0	0	0	
d(8)	1	2	0	0	0	
d(9)	0	3	0	0	0	
						_

Error Levels

PC-NARX based prediction error 4% PC-NARX based simulation errors 30% (L₂ Norm)