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Background and Motivation

The importance of Modeling

Models are abstract representations of the real world

Simulation models are extensively used in civil engineering practice.
Such models allow the user to

understand structural system performance,

predict structural behavior,

diagnose damage,

optimize design, etc
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The importance of Modeling

Structures may fail because:

the models used for their design do not properly represent the
complexity of the physics;

the values of the input parameters have not been selected properly.

Taking uncertainty into account in the analysis and design of structures is
of crucial importance

Yet, in a lot of cases a fully detailed simulation is either unrealizable or
too costly.

FE model

excitation dynamic response

Simulation of dynamic response through FE models requires excessive
computational resources particularly for complex, large structures.
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Background and Motivation

Introduction

Dynamic response of structural systems with uncertainties subjected to extreme
loading conditions.

Structural system is characterized by
parameter uncertainty
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The impact of different types of
excitation (of different magnitude and/or

spectral content) should also be
examined.
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Problem Definition

The Metamodeling Problem

Introduction

The metamodeling problem
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Problem Definition

The Metamodeling ProblemIntroduction

Problem definition
Consider a structural system represented by a numerical model M characterized by
uncertain input parameters ξ = [ξ1,ξ2, . . . ,ξM ]T with known joint pdf f (ξ ). The
dynamic response of M to a given input excitation x[t,ξ ] will also be a random
variable:

y[t,ξ ] = M (x[t,ξ ],ξ ), t = 1,2, . . . ,T

A metamodel M̃ which must be able to predict and/or simulate the detailed
numerical model results in a computationally inexpensive way and with sufficient
accuracy is sought.

Objectives of the study

Development of a metamodeling method based on PC-NARX models
Introduction of PC-NARX identification methods for both prediction and
simulation purposes.
The validation of PC-NARX metamodeling method through its application to the
case of a five-storey shear frame model subjected to dynamic excitation leading
to nonlinear response.
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The Forward Model

AutoRegressive with eXogenous input (ARX) models
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A j-DOF deterministic system is described by the general difference equation

xi = a1xi−1 + a2xi−2 + . . . a2jxi−2j + b1ui−1 + b2ui−2 + . . . + b2j−1ui−2j+1

An ARX(na, nb, nd) is defined as follows:

x [t] +
na∑

i=1

ai · x [t − i ]

︸ ︷︷ ︸
AR part

=

nb∑

i=nd

bi · u[t − i ]

︸ ︷︷ ︸
X part

+w [t], w [t] ∼ NID(0,σ2
w )

na : AR order ai : AR coefficients
nb : X order bi : X coefficients
nd : delay w [t] : model residual sequence
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The NARX Metamodel

The Metamodeling ProblemPC-NARX models

Polynomial Chaos Nonlinear ARX (PC-NARX) models

y[t] =
nθ

∑
i=1

θi(ξ ) ·gi(z[t])+ e[t]

random parameters θi(ξ ) describe the
uncertainty propagation. They may be

expanded on a PC basis orthogonal to the
pdf of the random input variables ξ

θi(ξ ) =
p

∑
j=1

θi, j ·φd( j)(ξ )

gi(·): nonlinear
function operators

that reflect the
nonlinear structural

dynamics

z[t] =
[
y[t−1], . . . ,y[t−na ], x[t], . . . ,x[t−nb ]

]T : regression vector
na ,nb : maximum output and input time lags
e[t]: residual sequence
θi, j : unknown deterministic coefficients of projection
d( j): multi-indices of the multivariate polynomial basis

PC-NARX parameter estimation

coefficients of projection θi, j

nθ : number of nonlinear regression terms
σ2

e : residual sequence variance
φd( j) : basis functions orthonormal w.r.t. the joint pdf of ξ

PC-NARX structure selection

select nonlinear functions gi(z[t])
(polynomial, wavelet, radial basis
functions, and so on)
select PC functional subspace
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PC-NARX Models - the PC bases

The PC basis basis φd(j) is formed from polynomial that are orthonormal with respect to

the joint probability density function of ξ. Assume the univariate case (single variable):

E [φα(ξ),φβ(ξ)] = δα,β =

{
1 for α = β

0 otherwise
PDF Support Polynomials
Normal (Gaussian) (−∞,∞) Hermite
Uniform [−1, 1] Legendre
Gamma (0,1) Laguerre
Chebyshev (-1, 1) Chebyshev
Beta (-1, 1) Jacobi
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PC-NARX Models - the PC bases

Illustrative Example
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PC-NARX Models Estimation
PC-NARX models

Estimation of a PC-NARX model for purposes of prediction

Consider K simulations conducted with
ξ k = [ξk,1,ξk,2, . . . ,ξk,M ]T: random input parameter vector realizations
xT

k = {xk[1,ξ k],xk[2,ξ k], . . . ,xk[T,ξ k]}: set of input excitation signals (k = 1,2, . . . ,K)

⇓
yT

k = {yk[1,ξ k],yk[2,ξ k], . . . ,yk[T,ξ k]}
corresponding set of the full scale numerical model dynamic responses

(assumed to also follow a PC-NARX model)

⇓
Estimation of the coefficients of projection θ = [ θ1,1, . . . ,θnθ ,p]

T based on the minimization
of the Prediction Error criterion:

θ̂ = argmin
θ

{
K

∑
k=1

T

∑
t=1

(yk[t]− ŷk[t|t−1])2

}
= argmin

θ

{
K

∑
k=1

T

∑
t=1

e2
k [t]

}

ŷk [t|t−1]: PC-ARX model’s one-step-ahead prediction

⇓
Ordinary Least Squares (OLS) estimator: θ̂ =

(
ΦT(ξ ) ·Φ(ξ )

)−1 ·
(
Φ(ξ )T ·Y

)

Φ(ξ ) : regression matrix Y : pooled response signal vector
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PC-NARX Models Estimation
PC-NARX models

Estimation of a PC-ARX model for purposes of simulation

The simulated response of a given PC-NARX metamodel may be obtained
recursively as:

ȳk[t] =
nθ

∑
i=1

θi(ξ k) ·gi(z̄[t]), t = 1,2, . . . ,T

with given initial conditions {ȳk[1−na], . . . , ȳk[0]} and {xk[1−nb], . . . ,xk[0]}

Estimation of the model coefficients of projection θ based on the minimization of
the Simulation Error criterion:

θ̂ s = argmin
θ s

{
K

∑
k=1

T

∑
t=1

(yk[t]− ȳk[t])
2

}
= argmin

θ s

{
K

∑
k=1

T

∑
t=1

ε2
k [t]

}

⇓
Iterative nonlinear optimization methods
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Flowchart of the complete identification scheme
Flowchart of the complete identification scheme

Draw K samples of ξ
(ξ1, ξ2, ..., ξΚ)

while
k ≤ K

Run numerical model 
simulation for ξ = ξk 

yk [t,ξk]

Define initial search space for the 
nonlinear regressors and construct  Φ(ξk)

k =k+1

PC-NARX metamodel for the prediction 
or simulation of any y[t,ξj]

xk [t,ξk]
Orthogonalization of Φ(ξk) and selection 

of the most significant nonlinear 
regressors (forward regression scheme)

Selection of the most significant PC basis 
functions (genetic algorithm scheme)

Define initial search 
space for the PC basis

Estimation of the coefficients of projection 
(prediction error or simulation error method)

Error ≤ ε

YES

NO

M
odel structure selection procedure
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Estimation of a PC-ARX model

Estimation of a PC-ARX model for purposes of Simulation

Assuming given initial conditions for the input & output {ȳk [1− na], . . . , ȳk [0]}
and {xk [1− nb], . . . , xk [0]} we may derive the simulated response of a PC-ARX
metamodel via the following relationship:

ȳk [t] = −
na∑
i=1

ai (ξk) · ȳk [t − i ] +

nb∑
i=0

bi (ξk) · x [t − i ], t = 1, 2, . . . ,T

In this case, the estimation of the model coefficients of projection θ is based on
the minimization of the Simulation Error criterion:

θ̂s = arg minθs

{∑K
k=1

∑T
t=1(yk [t]− ȳk [t])2

}
= arg minθs

{∑K
k=1

∑T
t=1 ε

2
k [t]

}
The relationship is in this case a nonlinear one which may be solved by

employing Iterative nonlinear optimization methods such as the

LevenbergMarquardt algorithm (LMA), the Newton-Raphson method or others.
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Numerical Application
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Simple Implementation Example

The described framework is implemented for the
simulation of the response of a five-storey shear frame,
subjected to a (known) dynamic input in the form of
earthquake excitation.

The frame is described by a nonlinear material law,
allowing for the sections to move into the post-yield
region which causes nonlinear behavior to occur.

We consider the following input parameters:

Input Vertical Horizontal
parameter elements elements
Density (kg/m3) 7850 7850
Poisson ratio 0.29 0.29
Young moduli (GPa) U(190, 210) U(190, 210)
Yield stress (MPa) U(200, 500) U(200, 500)
Cross section area (m2) U(0.04, 0.09) 0.0625
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Numerical Application

One of the recorded acceleration instances for the El Centro earthquake∗ has
been utilized as ground excitation:
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causing the observed shear stress vs top floor displacement response.
The curve shown here corresponds to the first simulation experiment (with ξ1)
and t = 1, 2, . . . 250. ∗ downloadable at: http: //peer.berkeley.edu/peer ground motion database
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Numerical Application

Simulation Experiments

The following visualization illustrates the range of Material and Geometric
properties of the shear frame model for the 20 simulations conducted using a
detailed structural model. The ANSYS finite element software has been used for
the reference simulations.
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Numerical Application

Simulation Experiments

Below the reference numerical model dynamic response signals yk [t] for separate
input parameter vectors ξ1, ξ2 and ξ3 are plotted.
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Numerical Application

Simulation Experiments

The magnitude of the estimated FRF (using the Welch method - MATLAB
pwelch) and the corresponding estimated coherence function of the dynamic
response signals obtained for input parameter vectors ξ1, ξ2 and ξ3.are plotted
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Numerical Application

Note:

The Coherence Function is a measure used to examine the relation
between two signals or data sets. It is expresses the power transfer between
input and output of a system.

It is defined as:

Cxy =
|Sxy |2
SxxSyy

Values of coherence will lie in the range 0 ≤ Cxy ≤ 1. For an ideal constant
parameter linear system with a single input x(t) and single output y(t), the
coherence will be equal to one.

In the previous plot, the system corresponding to parameter set ξ1 is

therefore the furthest from linearity.
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Numerical Application

Results

The estimated PC-ARX model parameters
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Numerical Application

Results

Polynomial expansion of b4(ξ) model parameter onto the input space
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Numerical Application

Results

In order to validate the workings of the metamodeling framework the
performance of the identified PC-ARX(10,10) metamodel is tested for the
prediction and simulation of the dynamic response of the FE model subjected this
time to the Pacoima Dam earthquake:
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The performance in prediction and simulation is remarkable given the large
reduction in computational time.

0.7836 % prediction error
3.7585 % simulation error

5000 times reduced simulation time
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Numerical Application

Results

Below the dynamic response of the numerical model and the corresponding
PC-ARX(10,10) based one-step-ahead predictions (x) and refined PC-ARX(10,10)
based simulations (+) (ξ 6= ξk ; k = 1, . . . , 20) are plotted2 4 6 8 10 12 14
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Summarizing

Summarizing

Stochastic metamodels of low order that are capable of accurately
approximating FE models are developed.

The metamodeling method is based on NARX models and Polynomial
Chaos basis expansion.

The numerical results demonstrate the efficiency of the proposed
methodology for accurate prediction and simulation of the dynamic
response of the model.

The proposed methodology may be adapted as an approximative low
cost surrogate for a number of purposes such as vibration control,
SHM, model updating and others.
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Specialised Implementations

Parametric modelling of the Input - Earthquake Accelerograms
[S. Rezaeian & A.D. Kiureghian 2010]

High-pass
filter

Linear 
time-varying

filter

STD
normalization

Time
modulating

filter

Fully non-stationary process
x[t]

Simulated ground acceleration
ag[t]

Unit-variance process with
spectral non-stationarity

White noise
w[t]

ζf : damping ratio of the filter
ωf (τ) = ωmid + ω′(τ − tmid)
ωmid: filter frequency at tmid

ω′: rate of change of the filter frequency

αi ’s: parameters of the modulating function.
Directly estimated from:

Ia: Arias intensity
D5−95 : effective duration of the motion
tmid: time at which 45% of Ia is reached
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EQ Input Parameterization

Modelling of the PEER database accelerograms

(results from the 1000 accelerograms with the best fit)

0 5 10 15 20
0

100

200

300

400

ωmid (Hz)

F
re

qu
en

cy

Log−Logistic(1.64,0.238)

−0.5 0 0.5
0

200

400

600

800

ω′ (Hz/s)

F
re

qu
en

cy

Logistic(−0.0516,0.0336)

0 0.5 1
0

50

100

150

200

250

ζf

F
re

qu
en

cy

Beta(1.38,3.70)

0 0.02 0.04
0

200

400

600

800

√
Ia

F
re

qu
en

cy

Exp(0.00551)

0 0.1 0.2 0.3 0.4
0

50

100

150

tmid

F
re

qu
en

cy

Beta(3.79,24.23)

0 0.5 1
0

50

100

150

D5−95

F
re

qu
en

cy

Beta(4.15,5.15)

DAAD Workshop, Thessaloniki, Greece, 11.11.2014 PCE for Uncertain Dynamical Systems 27



EQ Input Parameterization

Input random vector realizations for the 200 simulations conducted

Random input variables
Variable Distribution pdf parameters

E (GPa) Uniform
min = 180

max = 220

ωmid (Hz) Log-Logistic
α = 1.64

β = 0.238

ω′ (Hz/s) Logistic
µ = −0.0516

σ = 0.0336
√
Ia Exponential µ = 0.00551

D5−95 Beta
α = 4.15

β = 5.15
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EQ Input Parameterization

Validation based on a real earthquake ground motion acceleration
excitation: FE vs PC-NARX metamodel

(El Centro earthquake time history loading)
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Normalized residual sum of squares: prediction 13.15%, simulation 38.10%
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Specialised Implementations WT

Performance Index Extraction for Wind Turbine Systems
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Specialised Implementations WT

Performance Index Extraction for Wind Turbine Systems
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PC-NARX Models Estimation

Numerical case study

PC-NARX identification results

Nonlinear regressors:

Initial search space:

gi(z[t]) = z`1j1 [t] · z
`2
j2
[t] with `1, `2 = 0, . . .3, `1 + `2 ≤ 3

z[t] = [ y[t−1], . . . ,y[t−10],x[t],x[t−1], . . . ,x[t−10] ]T

Finally selected terms:

y[t−1], . . . ,y[t−10],x[t],x[t−1], . . . ,x[t−10],

y[t−1] · y2[t−2], . . . ,y[t−1] · y2[t−10],

y2[t−1] · y[t−2], . . . ,y2[t−1] · y[t−10],

y3[t−1],y3[t−2],y3[t−3].

Multi-indices of the selected PC basis functions

E ωmid ω ′ Ia D5−95
d(1) 0 0 0 0 0
d(2) 1 0 0 0 0
d(3) 0 1 0 0 0
d(4) 0 0 0 0 1
d(5) 1 0 0 1 0
d(6) 0 1 0 0 1
d(7) 0 2 0 0 0
d(8) 1 2 0 0 0
d(9) 0 3 0 0 0

Error Levels

PC-NARX based prediction error 4%
PC-NARX based simulation errors 30% (L2 Norm)
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